CYCLIZATION OF 2-INDOYLHYDRAZONES

TO DIHYDROPYRROLO[3,4-b]INDOLE DERIVATIVES

AND THEIR ISOMERIZATION TO PYRIDAZINO[4,5-b]INDOLES

N. A. Kogan and M. I. Vlasova

UDC 547.756'743.1'745.852.2:542.952.1:

541.67:543.422.4.6

When 2-indoylhydrazones of aromatic aldehydes are heated at 120°C for 3-5 min in amyl alcohol saturated with HCl, they cyclize to give 1-aryl-2-amino-1,2-dihydropyrrolo[3,4-b]indol-3-ones (I-VI) (see Table 1) in 60-85% yields.

In contrast to the starting hydrazones, I-VI do not undergo acid and alkaline hydrolysis with cleavage of an aldehyde. Their IR spectra show the presence of a 3-amino group (a narrow band at 3350 cm⁻¹). Also in contrast to the starting hydrazones, the PMR spectra of I-VI contain a singlet at 5.4 ppm due to a proton in the 1-position. The exocyclic position of the amino group in I-VI is confirmed by the reaction with aldehydes, which gives hydrazones XI. All I-VI have λ_{max} 298-302 nm(ϵ 1.6·10⁴).

When I-VI are heated above 50° in ethanol or amyl alcohol, they isomerize to 1-aryl-1,2,3,4-tetra-hydropyridazino[4,5-b]indol-4-ones (VII-X) (see Table 1). Bases I-VI are isomerized only at temperatures above 80° and when 11>pH>2. The rate of isomerization of bases I-VI to VII-X follows a first-order equation. On treatment with POCl₃, VII is converted into the 4-chloro derivative (XIII). The IR spectra of VII-X do not contain the absorption of a free NH₂ group. Compounds VII-X have λ_{max} at 255-260 nm.

The reduction of I and VII with Raney nickel gives the amide of 3-benzylindole-2-carboxylic acid (XIV). Treatment of hydrazone XI under the same conditions gives the N-unsubstituted dihydropyrrolo-[3,4-b]indol-3-one (XII).

Leningrad Institute of Pharmaceutical Chemistry. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 279-280, February, 1972. Original article submitted April 1, 1971.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Characteristics of the Compounds Obtained

Com- pound	R	Mp, ℃	Empirical formula	Found, %			Calc., %			Yield,
				С	н	N	С	Н	N	: ¶c
I	Н	250	C ₁₆ H ₁₃ N ₃ O	72,8	5,0	16,0	73,0	4,9	16,0	60
II]	p-CH ₃	242	C ₁₇ H ₁₅ N ₃ O	73,6	5,3	15,0	73,6	5,4	15,2	85
III	p-OCH ₃	218	C ₁₇ H ₁₅ N ₃ O ₂	69,5	5,2	14,2	69,6	5,1	14,3	70
IV	p-Cl	238	C16H12CIN3O	64,4	4,0	14,1	64,5	4,0	14,1	65
V	o-Cl	290	C ₁₆ H ₁₂ ClN ₃ O	64,3	4,0	14,1	64,5	4,0	14,1	65
VI	p-OH, m -OCH ₃	265	C ₁₇ H ₁₅ N ₃ O ₃	65,9	4,8	13,5	66,0	4,8	13,6	70
VII	' H	348-350	C ₁₆ H ₁₃ N ₃ O	73,2	4,8	15,6	73,0	4,9	16,0	70
VIII	p-CH ₃	350	C ₁₇ H ₁₅ N ₃ O	73,5	5,0	15,1	73,6	5,4	15,2	90
IX	p-OCH ₃	320	C ₁₇ H ₁₅ N ₃ O ₂	69,1	5,3	14,3	69,6	5,1	14,3	80
X	p-Cl	320-322	C ₁₆ H ₁₂ CIN ₃ O	64.6	4.4	14,0	64,5	4,0	14,1	65
XI	' H	290	C ₂₃ H ₁₇ N ₃ O	78,7	4,9	11,9	78,6	4,8	12,0	60
XII	Ĥ	238	C ₁₆ H ₁₂ N ₂ O	77.6	4,8	11,3	77.4	4.8	11,3	74
XIII	Ĥ	297	C ₁₆ H ₁₂ ClN ₃	68,6	4,2	14,8	68,2	4,3	14,9	65
XIV	Ĥ	188	C ₁₆ H ₁₄ N ₂ O	76,8	5,7	11,1	76,8	5,6	11.2	68

EXPERIMENTAL

1-Phenyl-2-amino-1,2-dihydropyrrolo[3,4-b]indol-3-one Hydrochloride (I). A stream of HCl was passed through 0.5 g (1.9 mmole) of benzaldehyde 2-indoylhydrazone in 5 ml of amyl alcohol at 120° for 3 min. The hydrazone dissolved, and I began to precipitate. Base I was isolated by treatment of an aqueous suspension of it with pyridine.

1-Phenyl-1,2-dihydropyridazino[4,5-b]indol-4-one (VII). A 0.5 g (1.6 mmole) sample of I in 20 ml of amyl alcohol was refluxed for 2 h. The mixture was then cooled to precipitate VII, which was crystallized from alcohol.